1+1 = 3: A Fusion of 2 Enzymes in the Methionine Salvage Pathway of Tetrahymena thermophila Creates a Trifunctional Enzyme That Catalyzes 3 Steps in the Pathway
نویسندگان
چکیده
The methionine salvage pathway is responsible for regenerating methionine from its derivative, methylthioadenosine. The complete set of enzymes of the methionine pathway has been previously described in bacteria. Despite its importance, the pathway has only been fully described in one eukaryotic organism, yeast. Here we use a computational approach to identify the enzymes of the methionine salvage pathway in another eukaryote, Tetrahymena thermophila. In this organism, the pathway has two fused genes, MTNAK and MTNBD. Each of these fusions involves two different genes whose products catalyze two different single steps of the pathway in other organisms. One of the fusion proteins, mtnBD, is formed by enzymes that catalyze non-consecutive steps in the pathway, mtnB and mtnD. Interestingly the gene that codes for the intervening enzyme in the pathway, mtnC, is missing from the genome of Tetrahymena. We used complementation tests in yeast to show that the fusion of mtnB and mtnD from Tetrahymena is able to do in one step what yeast does in three, since it can rescue yeast knockouts of mtnB, mtnC, or mtnD. Fusion genes have proved to be very useful in aiding phylogenetic reconstructions and in the functional characterization of genes. Our results highlight another characteristic of fusion proteins, namely that these proteins can serve as biochemical shortcuts, allowing organisms to completely bypass steps in biochemical pathways.
منابع مشابه
MtnBD Is a Multifunctional Fusion Enzyme in the Methionine Salvage Pathway of Tetrahymena thermophila
To recycle reduced sulfur to methionine in the methionine salvage pathway (MSP), 5-methylthioribulose-1-phosphate is converted to 2-keto-4-methylthiobutyrate, the methionine precursor, by four steps; dehydratase, enolase, phosphatase, and dioxygenase reactions (catalyzed by MtnB, MtnW, MtnX and MtnD, respectively, in Bacillus subtilis). It has been proposed that the MtnBD fusion enzyme in Tetra...
متن کاملAnalogs of 1-phosphonooxy-2,2-dihydroxy-3-oxo-5-(methylthio)pentane, an acyclic intermediate in the methionine salvage pathway: a new preparation and characterization of activity with E1 enolase/phosphatase from Klebsiella oxytoca.
The methionine salvage pathway allows the in vivo recovery of the methylthio moiety of methionine upon the formation of methylthioadenosine (MTA) from S-adenosylmethionine (SAM). The Fe(II)-containing form of acireductone dioxygenase (ARD) catalyzes the penultimate step in the pathway in Klebsiella oxytoca, the oxidative cleavage of the acireductone 1,2-dihydroxy-3-oxo-5-(methylthio)pent-1-ene ...
متن کاملEffective fraction of Teucrium polium suppressed polyol pathway through inhibiting the aldose reductase enzyme: strategy to reduce retinopathy
Background: Several metabolic pathways are involved in the complications of diabetes like polyol pathway. Aldose reductase (AR) is a key enzyme in the polyol pathway, which catalyzes the conversion of glucose to sorbitol. AR inhibitors are appropriate to prevent and treat the diabetes complications. Objective: This study was designed to investigate the effect of different fractions of Teucrium ...
متن کاملPronuclear fusion failure: an alternate conjugational pathway in Tetrahymena thermophila, induced by vinblastine.
Vinblastine is shown to induce pronuclear fusion failure in conjugating Tetrahymena thermophila. In this alternate conjugational pathway gametic pronuclei are exchanged between conjugants but do not fuse. Each pronucleus undergoes one mitotic division to produce a new macro- and micronucleus. Genetic consequences of pronuclear fusion failure include the following: (1) the progeny are whole geno...
متن کاملGenetic and regulatory aspects of methionine biosynthesis in Saccharomyces cerevisiae.
Methionine biosynthesis and regulation of four enzymatic steps involved in this pathway were studied in Saccharomyces cerevisiae, in relation to genes concerned with resistance to ethionine (eth(1) and eth(2)). Data presented in this paper and others favor a scheme which excludes cystathionine as an obligatory intermediate. Kinetic data are presented for homocysteine synthetase [K(m)(O-acetyl-l...
متن کامل